DTE analysis with STAR + RSEM input

Load required libraries

library(data.table)
library(DESeq2)
library(apeglm)
library(ggplot2)
library(ggrepel)
library(EnhancedVolcano)

Import input data

Load clinical information and define file path

dir = "../../"
sampleData = paste0(dir, "clinical.txt")
sampleData = fread(sampleData)
rownames(sampleData) = sampleData$ENA_RUN
sampleData$individual = as.factor(sampleData$individual)
sampleData$paris_classification = as.factor(sampleData$paris_classification)

# Use relevel() to set adjacent normal samples as reference
sampleData$paris_classification = relevel(sampleData$paris_classification, ref = "normal")

files = list.files(paste0(dir, "rsem_star"), "*soforms.results$", full.names = T)
> files
 [1] "../../rsem_star/ERR2675454.isoforms.results"
 [2] "../../rsem_star/ERR2675455.isoforms.results"
 [3] "../../rsem_star/ERR2675458.isoforms.results"
 [4] "../../rsem_star/ERR2675459.isoforms.results"
 [5] "../../rsem_star/ERR2675460.isoforms.results"
 [6] "../../rsem_star/ERR2675461.isoforms.results"
 [7] "../../rsem_star/ERR2675464.isoforms.results"
 [8] "../../rsem_star/ERR2675465.isoforms.results"
 [9] "../../rsem_star/ERR2675468.isoforms.results"
[10] "../../rsem_star/ERR2675469.isoforms.results"
[11] "../../rsem_star/ERR2675472.isoforms.results"
[12] "../../rsem_star/ERR2675473.isoforms.results"
[13] "../../rsem_star/ERR2675476.isoforms.results"
[14] "../../rsem_star/ERR2675477.isoforms.results"
[15] "../../rsem_star/ERR2675478.isoforms.results"
[16] "../../rsem_star/ERR2675479.isoforms.results"
[17] "../../rsem_star/ERR2675480.isoforms.results"
[18] "../../rsem_star/ERR2675481.isoforms.results"
[19] "../../rsem_star/ERR2675484.isoforms.results"
[20] "../../rsem_star/ERR2675485.isoforms.results"

Import RSEM result file and keep the 5th column containing the expected_count values. Build a countData data.frame to store counts

countData = data.frame(fread(files[1]))[c(1,5)]

# Loop and read the 5th column remaining files
for(i in 2:length(files)) {
        countData = cbind(countData, data.frame(fread(files[i]))[5])
}

colnames(countData) = c("GeneID", gsub(paste0(dir,"rsem_star/"), "", files))
colnames(countData) = gsub(".isoforms.results", "", colnames(countData))
rownames(countData) = countData$GeneID

countData = countData[,c(2:ncol(countData))]
countData = round(countData)    # convert to integer
> countData[1:10,1:5]
                  ERR2675454 ERR2675455 ERR2675458 ERR2675459 ERR2675460
ENST00000373020.9        874       1921        627       1706        944
ENST00000494424.1          0          0          0          0          0
ENST00000496771.5          3          4         16         19         37
ENST00000612152.4          0          0          0          0          0
ENST00000614008.4        114        103         60         58         60
ENST00000373031.5         29         26          9         36         22
ENST00000485971.1          5          0          0          9          0
ENST00000371582.8         26         54         28         51         54
ENST00000371584.8         18         16         39         35         36
ENST00000371588.9        638        781        796        489        622

Build a DESeqDataSet from countData with DESeqDataSetFromMatrix, providing also the sample information and a design formula

dds = DESeqDataSetFromMatrix(countData = countData, 
colData = sampleData, design = ~ individual + paris_classification)
> dds
class: DESeqDataSet 
dim: 227912 20 
metadata(1): version
assays(1): counts
rownames(227912): ENST00000373020.9 ENST00000494424.1 ... ENST00000673857.1 ENST00000673884.1
rowData names(0):
colnames(20): ERR2675454 ERR2675455 ... ERR2675484 ERR2675485
colData names(11): ENA_RUN individual ... braf_status kras_status

* Import input data (tximport)

Alternatively, tximport can be used to import expected_count from RSEM, as follows

library(tximport)

txi = tximport(files, type = "none", txIn = TRUE, txOut = TRUE, 
txIdCol = "transcript_id", abundanceCol = "TPM", 
countsCol = "expected_count", lengthCol = "effective_length",
importer = function(x) readr::read_tsv(x))

# fix "Error: all(lengths > 0) is not TRUE" error
txi$length[txi$length == 0] = 0.01

dds = DESeqDataSetFromTximport(txi, 
colData = sampleData, ~ individual + paris_classification)
> dds
class: DESeqDataSet 
dim: 227912 20 
metadata(1): version
assays(2): counts avgTxLength
rownames(227912): ENST00000373020.9 ENST00000494424.1 ... ENST00000673857.1 ENST00000673884.1
rowData names(0):
colnames: NULL
colData names(11): ENA_RUN individual ... braf_status kras_status

Differential expression analysis

Run DESeq2 analysis using DESeq, which performs (1) estimation of size factors, (2) estimation of dispersion, then (3) Negative Binomial GLM fitting and Wald statistics. The results tables (log2 fold changes and p-values) can be generated using the results function

dds = DESeq(dds)
> cbind(resultsNames(dds))
      [,1]                                  
 [1,] "Intercept"                           
 [2,] "individual_S11_vs_S1"                
 [3,] "individual_S12_vs_S1"                
 [4,] "individual_S15_vs_S1"                
 [5,] "individual_S17_vs_S1"                
 [6,] "individual_S3_vs_S1"                 
 [7,] "individual_S5_vs_S1"                 
 [8,] "individual_S6_vs_S1"                 
 [9,] "individual_S7_vs_S1"                 
[10,] "individual_S9_vs_S1"                 
[11,] "paris_classification_0.IIa_vs_normal"

We set the adjusted p-value cutoff (FDR) to be 0.05, hence we change the default significance cutoff used for optimizing the independent filtering alpha from 0.1 to 0.05

res <- results(dds, name = "paris_classification_0.IIa_vs_normal", alpha = 0.05)

At a FDR of 0.05, we have 2945 genes up-regulated and 2871 genes down-regulated in 0-IIa pre-lesion versus Normal

> summary(res)

out of 159634 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up)       : 4210, 2.6%
LFC < 0 (down)     : 3136, 2%
outliers [1]       : 0, 0%
low counts [2]     : 87733, 55%
(mean count < 3)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

The results res object contains the follow columns

> mcols(res)$description
[1] "mean of normalized counts for all samples"                   
[2] "log2 fold change (MLE): paris classification 0.IIa vs normal"
[3] "standard error: paris classification 0.IIa vs normal"        
[4] "Wald statistic: paris classification 0.IIa vs normal"        
[5] "Wald test p-value: paris classification 0.IIa vs normal"     
[6] "BH adjusted p-values"                                        

> head(res)
log2 fold change (MLE): paris classification 0.IIa vs normal 
Wald test p-value: paris classification 0.IIa vs normal 
DataFrame with 6 rows and 6 columns
                          baseMean     log2FoldChange             lfcSE               stat              pvalue               padj
                         <numeric>          <numeric>         <numeric>          <numeric>           <numeric>          <numeric>
ENST00000373020.9 1187.48517486989  -0.63220378627308 0.194294561388125  -3.25384190764961 0.00113855622353168 0.0158582088422363
ENST00000494424.1                0                 NA                NA                 NA                  NA                 NA
ENST00000496771.5 10.8614532030735  0.332252420760318 0.385893227572389  0.860995728923465   0.389240395417396  0.748731313595519
ENST00000612152.4 0.77778022898225   1.06375257452071  3.00091767488387  0.354475760339502   0.722982366693673                 NA
ENST00000614008.4 83.2226874117913 -0.176481709375863 0.356493402266472 -0.495049019852396   0.620565518581719  0.892120965062597
ENST00000373031.5 25.5200220663835 0.0278313866560059 0.389927929551535 0.0713757198362666   0.943098733077851  0.990814121769475

Read about authors' note on p-values and adjusted p-values set to NA here

Exploring results

MA-plot

We use MA-plot to show the log2 fold changes attributable to a given variable (i.e. pre-lesion) over the mean of normalized counts for all the samples. Points will be colored red if the adjusted p value is less than 0.05. Points which fall out of the window are plotted as open triangles pointing either up or down

resLFC = lfcShrink(dds, coef = "paris_classification_0.IIa_vs_normal", 
type="apeglm")

png("DTE_MA-plot.RSEM.png", width=7, height=5, units = "in", res = 300)
plotMA(resLFC, alpha = 0.05, ylim=c(-6,6), 
main = "MA-plot for the shrunken log2 fold changes")
dev.off()

Principal component plot of the samples

First, we perform count data transformation with regularized logarithm rlog or variance stabilizing transformations vst. You can read here about which transformation to choose

rld = rlog(dds)
vsd = vst(dds)

Perform sample PCA for transformed data using plotPCA, then plot with ggplot

# rlog
pcaData = plotPCA(rld, intgroup=c("individual","paris_classification"), 
returnData=TRUE)
percentVar = round(100 * attr(pcaData, "percentVar"))

png("DTE_PCA-rlog.RSEM.png", width=7, height=7, units = "in", res = 300)
ggplot(pcaData, aes(PC1, PC2, colour = paris_classification)) + 
geom_point(size = 2) + theme_bw() + 
scale_color_manual(values = c("blue", "red")) +
geom_text_repel(aes(label = individual), nudge_x = -1, nudge_y = 0.2, size = 3) +
ggtitle("Principal Component Analysis (PCA)", subtitle = "rlog transformation") +
xlab(paste0("PC1: ",percentVar[1],"% variance")) +
ylab(paste0("PC2: ",percentVar[2],"% variance"))
dev.off()
# vst
pcaData = plotPCA(vsd, intgroup=c("individual","paris_classification"), 
returnData=TRUE)
percentVar = round(100 * attr(pcaData, "percentVar"))

png("DTE_PCA-vst.RSEM.png", width=7, height=7, units = "in", res = 300)
ggplot(pcaData, aes(PC1, PC2, colour = paris_classification)) + 
geom_point(size = 2) + theme_bw() + 
scale_color_manual(values = c("blue", "red")) +
geom_text_repel(aes(label = individual), nudge_x = -1, nudge_y = 0.2, size = 3) +
ggtitle("Principal Component Analysis (PCA)", subtitle = "vst transformation") +
xlab(paste0("PC1: ",percentVar[1],"% variance")) +
ylab(paste0("PC2: ",percentVar[2],"% variance"))
dev.off()

Volcano plots

We use EnhancedVolcano to generate volcano plot to visualise the results of differential expression analyses

pCutoff = 0.05
FCcutoff = 1.0

p = EnhancedVolcano(data.frame(res), lab = NA, x = 'log2FoldChange', y = 'padj',
xlab = bquote(~Log[2]~ 'fold change'), ylab = bquote(~-Log[10]~adjusted~italic(P)),
pCutoff = pCutoff, FCcutoff = FCcutoff, pointSize = 1.0, labSize = 2.0,
title = "Volcano plot", subtitle = "SSA/P vs. Normal",
caption = paste0('log2 FC cutoff: ', FCcutoff, '; p-value cutoff: ', pCutoff, '\nTotal = ', nrow(res), ' variables'),
legend=c('NS','Log2 FC','Adjusted p-value', 'Adjusted p-value & Log2 FC'),
legendPosition = 'bottom', legendLabSize = 14, legendIconSize = 5.0)

png("DTE_VolcanoPlots.RSEM.png", width=7, height=7, units = "in", res = 300)
print(p)
dev.off()

Exporting results

We construct a normData data.frame to store per-group normalised mean and normalised counts of all samples, and a deData data.frame to store the DESeq results. We merge both data.frame with a annoData data.frame that contain per-transcript annotation derived from GENCODE GTF file before exporting the results in tabular format

annoData = "/home/USER/db/refanno/gencode.v33.annotation_transcripts.txt"
annoData = data.frame(fread(annoData))

normCounts = as.data.frame(counts(dds, normalized = TRUE))
baseMeans = as.data.frame(sapply( levels(dds$paris_classification), 
function(lvl) rowMeans( counts(dds, normalized = TRUE)[, dds$paris_classification == lvl, drop = FALSE] ) ))

normData = merge(annoData, merge(baseMeans, normCounts, by.x = 'row.names', by.y = 'row.names'), by.x = 'TranscriptID', by.y = 'Row.names')
normData = normData[order(normData$Chromosome, normData$Start, normData$End),]

deData = data.frame(res[,c(1,2,5,6)])
colnames(deData) = c("baseMean","log2fc","pvalue","padj")
deData = merge(annoData, deData, by.x = 'TranscriptID', by.y = 'row.names')
deData = deData[order(deData$Chromosome, deData$Start, deData$End),]

write.table(normData, file="DTE_DESeq2_Means_and_NormalisedCount.RSEM.txt", 
sep = "\t", quote = F, row.names = F, col.names = T)
write.table(deData, file="DTE_DESeq2_DE_results.RSEM.txt", sep = "\t", 
quote = F, row.names = F, col.names = T)
> normData[normData$GeneSymbol == "ZIC2", 1:14]
           TranscriptID             GeneID GeneSymbol Chromosome    Start      End TranscriptName                Class Strand Length   normal       0-IIa ERR2675454 ERR2675455
25492 ENST00000376335.8 ENSG00000043355.12       ZIC2      chr13 99981784 99986765       ZIC2-201       protein_coding      +   4981 1.658049 168.7328173   260.0938          0
93460 ENST00000490085.5 ENSG00000043355.12       ZIC2      chr13 99984289 99985492       ZIC2-205 processed_transcript      +   1203 0.000000   0.0000000     0.0000          0
75945 ENST00000468291.1 ENSG00000043355.12       ZIC2      chr13 99984689 99985492       ZIC2-202 processed_transcript      +    803 0.000000   0.7729482     0.0000          0
83115 ENST00000477213.1 ENSG00000043355.12       ZIC2      chr13 99984789 99985474       ZIC2-203 processed_transcript      +    685 0.000000   0.8654115     0.0000          0
86616 ENST00000481565.1 ENSG00000043355.12       ZIC2      chr13 99985494 99985904       ZIC2-204 processed_transcript      +    410 0.000000   0.0000000     0.0000          0

> deData[deData$GeneSymbol == "ZIC2",]
           TranscriptID             GeneID GeneSymbol Chromosome    Start      End TranscriptName                Class Strand Length   baseMean    log2fc       pvalue         padj
25492 ENST00000376335.8 ENSG00000043355.12       ZIC2      chr13 99981784 99986765       ZIC2-201       protein_coding      +   4981 85.1954333 6.7850301 2.059453e-42 5.288456e-39
93460 ENST00000490085.5 ENSG00000043355.12       ZIC2      chr13 99984289 99985492       ZIC2-205 processed_transcript      +   1203  0.0000000        NA           NA           NA
75945 ENST00000468291.1 ENSG00000043355.12       ZIC2      chr13 99984689 99985492       ZIC2-202 processed_transcript      +    803  0.3864741 0.6503018 8.289198e-01           NA
83115 ENST00000477213.1 ENSG00000043355.12       ZIC2      chr13 99984789 99985474       ZIC2-203 processed_transcript      +    685  0.4327057 1.2410927 6.797049e-01           NA
86616 ENST00000481565.1 ENSG00000043355.12       ZIC2      chr13 99985494 99985904       ZIC2-204 processed_transcript      +    410  0.0000000        NA           NA           NA

Session info

> sessionInfo()
R version 3.6.2 (2019-12-12)
Platform: x86_64-conda_cos6-linux-gnu (64-bit)
Running under: Ubuntu 18.04.4 LTS

Matrix products: default
BLAS/LAPACK: /home/USER/miniconda3/lib/libopenblasp-r0.3.9.so

locale:
 [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB.UTF-8    
 [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
 [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] EnhancedVolcano_1.4.0       ggrepel_0.8.2              
 [3] ggplot2_3.3.0               apeglm_1.8.0               
 [5] DESeq2_1.26.0               SummarizedExperiment_1.16.1
 [7] DelayedArray_0.12.3         BiocParallel_1.20.1        
 [9] matrixStats_0.56.0          Biobase_2.46.0             
[11] GenomicRanges_1.38.0        GenomeInfoDb_1.22.1        
[13] IRanges_2.20.2              S4Vectors_0.24.4           
[15] BiocGenerics_0.32.0         data.table_1.12.8          

loaded via a namespace (and not attached):
 [1] bit64_0.9-7            splines_3.6.2          Formula_1.2-3         
 [4] assertthat_0.2.1       latticeExtra_0.6-29    blob_1.2.1            
 [7] GenomeInfoDbData_1.2.2 numDeriv_2016.8-1.1    pillar_1.4.4          
[10] RSQLite_2.2.0          backports_1.1.6        lattice_0.20-41       
[13] glue_1.4.0             bbmle_1.0.23.1         digest_0.6.25         
[16] RColorBrewer_1.1-2     XVector_0.26.0         checkmate_2.0.0       
[19] colorspace_1.4-1       plyr_1.8.6             htmltools_0.4.0       
[22] Matrix_1.2-18          XML_3.99-0.3           pkgconfig_2.0.3       
[25] emdbook_1.3.12         genefilter_1.68.0      zlibbioc_1.32.0       
[28] mvtnorm_1.1-0          purrr_0.3.4            xtable_1.8-4          
[31] scales_1.1.0           jpeg_0.1-8.1           htmlTable_1.13.3      
[34] tibble_3.0.1           annotate_1.64.0        farver_2.0.3          
[37] ellipsis_0.3.0         withr_2.2.0            nnet_7.3-14           
[40] survival_3.1-12        magrittr_1.5           crayon_1.3.4          
[43] memoise_1.1.0          MASS_7.3-51.6          foreign_0.8-76        
[46] tools_3.6.2            lifecycle_0.2.0        stringr_1.4.0         
[49] locfit_1.5-9.4         munsell_0.5.0          cluster_2.1.0         
[52] AnnotationDbi_1.48.0   compiler_3.6.2         rlang_0.4.6           
[55] grid_3.6.2             RCurl_1.98-1.2         rstudioapi_0.11       
[58] htmlwidgets_1.5.1      labeling_0.3           bitops_1.0-6          
[61] base64enc_0.1-3        gtable_0.3.0           DBI_1.1.0             
[64] R6_2.4.1               gridExtra_2.3          bdsmatrix_1.3-4       
[67] knitr_1.28             dplyr_0.8.5            bit_1.1-15.2          
[70] Hmisc_4.4-0            stringi_1.4.6          Rcpp_1.0.4.6          
[73] geneplotter_1.64.0     vctrs_0.2.4            rpart_4.1-15          
[76] acepack_1.4.1          png_0.1-7              coda_0.19-3           
[79] tidyselect_1.0.0       xfun_0.13             

Last updated